COST MODEL EQUATIONS USED IN THE UNIT COST ESTIMATOR

A. DATA ENTRY

Prompt user to enter data for the following (all fields shall initially contain default values):

Variable	Variable Definition	Default Value	Units
Ор	Operating Hours per Day	16	hr/day
DRE	Destruction Removal Efficiency	0.98	%
DFR	Design Flow Rate	3,000	cfm
Cont	Contaminant Concentration	2,000	ppm
Gas	Natural Gas Cost	0.715	\$/therm
MW _{cont}	Molecular Weight of Contaminant	100	
MWair	Molecular Weight of Air	29	
MW _{water}	Molecular Weight of Water	18	
Electric	Electrical Cost	0.10	\$/kwhr
Water	Water Cost	3.00	\$/100 cu. ft.
Sewer	Sewer Cost	3.68	\$/100 cu. ft.
Manifest	Manifest Cost	125	\$/drum
Labor _{tech}	Technician Labor Cost	37	\$/hr
Labor _{eng}	Engineer Labor Cost	50	\$/hr

B. CALCULATED PARAMETERS

 $DRE_{adj} = IF(DRE \ge 0.98, 0.98, DRE)$. In other words, (If DRE entered ≥ 0.98 , \underline{true} : DRE_{adj} = 0.98, \underline{false} : DRE_{adj} = DRE entered)

TWA (ppm) = [Cont * 75 + (Cont + 200)/2*50 + 200 * 240]/365

 $Cont_{non\text{-}adsorption}/year = (TWA/1,000,000) * DFR * 1,440 * MW_{cont}/MW_{air} * 0.075$

* DRE * Op/24 * 365

 $Cont_{non-adsorption}/day = (Cont_{non-adsorption}/year)/365$

Cont_{adsorption}/year = (TWA/1,000,000) * DFR * 1,440 * MW_{cont}/MW_{air} * 0.075

* DRE_{adj} * Op/24 * 365

 $Cont_{adsorption}/day = (Cont_{adsorption}/year)/365$

Drums (# /day) = $(Cont_{adsorption}/year)/(62.4 * MW_{cont}/MW_{water}) * 7.48/55/365$

Steam (lb/day) = 3 * Cont_{adsorption}/day

H2O (cu. ft./day) = Steam/62.5

Desorb (drums water/day) = H2O * 7.48/55

C. CAPITAL COST CALCULATION

1. Installation

For Thermal Oxidation, Plasma Destruction, Photocatalytic Oxidation (system), Fluidized Bed Adsorption with PDU (system), Alkali Bed Reactor:

Capital Cost_{DFR} = capital cost₃₀₀₀ + 0.35 * capital cost₃₀₀₀ * (DFR - 3000)/3000

where: Thermal Oxidation: capital $cost_{3000} = $256,830$

Plasma Destruction: capital cost₃₀₀₀ = \$431,830

Photocatalytic Oxidation: capital cost₃₀₀₀ = \$359,400

Fluidized Bed Adsorption with PDU: capital $cost_{3000} = $414,489$

Alkali Bed Reactor: capital cost₃₀₀₀ = \$365,000

For Catalytic Thermal Oxidation:

Capital Cost_{DFR} = capital cost₃₀₀₀

 $+ 0.35 * (capital cost_{3000} - catalyst frame_{3000}) * (DFR - 3000)/3000$

 $+ $37,000_{\text{per }1000 \text{ cfm}} * (DFR - 3000)/1000$

where: capital $cost_{3000} = $359,400$

catalyst frame $_{3000}$ = \$111,000

For Flameless Thermal Oxidation:

Capital Cost_{DFR} = capital cost₃₀₀₀

+ 0.35 * (capital cost₃₀₀₀ – bed material₃₀₀₀) * (DFR – 3000)/3000

 $+ $25,000_{per \, 1000 \, cfm} * (DFR - 3000)/1000$

where: capital $cost_{3000} = $415,000$

bed material₃₀₀₀ = \$75,000

For Vapor Phase Adsorption (Fluidized Bed Adsorber system):

Capital Cost_{DFR} = capital cost₃₀₀₀ + 0.35 * (capital cost₃₀₀₀ – beaded media₃₀₀₀) *

 $(DFR - 3000)/3000 + beaded media_{3000} * (DFR - 3000)/1000$

where: capital $cost_{3000} = $425,000$

beaded media₃₀₀₀ = \$4,950

2. Mobilization/Demobilization

For each technology/system:

$$Mob = (300 * Labor_{tech} + 40 * Labor_{eng}) + (150 * Labor_{tech} + 20 * Labor_{eng})$$

3. Total Capital Cost

For each technology/system:

Total_{cap} = Capital Cost_{DFR +} Mob

D. O&M COST CALCULATION

1. Natural Gas

For Thermal Oxidation:

 $NG_{TO} = 7,000,000 * Op/100,000 * Gas * DFR/3,000$

For Catalytic Thermal Oxidation:

 $NG_{CTO} = 3,000,000 * Op/100,000 * Gas * DFR/3,000$

For Flameless Thermal Oxidation:

 $NG_{FLO} = 4,400,000 * Op/100,000 * Gas * DFR/3,000$

For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Fluidized Bed with PDU system:

NG_{AD} = Steam * 1,164/100,000 * Gas/0.8

For Photocatalytic Oxidation:

Not Applicable (value = 0)

For Alkali Bed Reactor:

 $NG_{ALK} = NG_{CTO} * (662-60)/(900-60)$

For Plasma Destruction:

Not Applicable (value = 0)

2. Electricity

For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation:

 $E_{OX} = 50 * Op * Electric * DFR/3,000$

For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Alkali Bed Reactor:

 $E_{AD} = 60 * Op * Electric * DFR/3,000$

For Photocatalytic Oxidation:

E_{PCO} = 3,000 * 3 * 2 * 2 * (Cont – 100)/400/365 * Electric/0.07 * DFR/3,000

For Plasma Destruction:

For Fluidized Bed Adsorption with PDU (system):

$$E_{UV} = 118,973 * Electric/0.07 * (Contadsorption/day)/95479$$

3. Water

For Thermal Oxidation:

$$W_{TO} = 90 * (Water + Sewer)/7.48/100 * Op * 60 * DFR/3,000$$

For Catalytic Thermal Oxidation:

$$W_{CTO} = 48 * (Water + Sewer)/7.48/100 * Op * 60 * DFR/3,000$$

For Flameless Thermal Oxidation:

For Vapor Phase Adsorption (Deep Bed Adsorber system), Fluidized Bed Adsorption with PDU (system):

$$W_{AD} = H2O/100 * (Water + Sewer)$$

For Photocatalytic Oxidation:

For Plasma Destruction:

For Alkali Bed Reactor:

$$W_{ALK} = Cont_{non-adsorption}/day * 10/62.4/100 * (Water + Sewer) * DFR/3,000$$

4. pH Control

For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor:

For Fluidized Bed Adsorption with PDU (system):

For Vapor Phase Adsorption (Fluidized Bed Adsorber system):

5. Manifest

For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor:

Not Applicable (value = 0)

For Vapor Phase Adsorption (Fluidized Bed Adsorber system):

MF_{FAD} = Drums * Manifest

6. Monitor & Preventive Maintenance (Labor, \$/day)

For Thermal Oxidation:

For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber):

$$MPML_{TO} = 2 * Labor_{tech}$$

7. Monitor & Preventive Maintenance (Material, \$/day)

For Thermal Oxidation:

$$MPMM_{TO} = 45$$

For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor:

 $MPML_{OX} = 50$

For Vapor Phase Adsorption (Fluidized Bed Adsorber system):

 $MPML_{AD} = 66$

8. Unscheduled Maintenance (Labor, \$/day)

For Thermal Oxidation:

 $UML_{TO} = 0.5 * Labor_{tech}$

For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber):

 $UML_{OT} = 1* Labor_{tech}$

9. Unscheduled Maintenance (Material, \$/day)

For Thermal Oxidation, Flameless Thermal Oxidation:

 $UMM_{OX} = 5$

For Catalytic Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber):

 $UMM_{OT} = 10$

10. Management

For Thermal Oxidation:

$$MGT_{OX} = 1^* Labor_{eng}$$

For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber):

MGT_{OT} = 2* Labor_{eng}

11. Daily Operating Cost (\$/day)

For each technology:

Daily = sum of Items D1 through D10 above for each respective technology.

12. Annual Operating Cost (\$/year)

For each technology:

Annual_{op} = cost 4 day * 365

E. SUMMARY CALCULATIONS

1. Amortized Capital Cost

For Vapor Phase Adsorption (Fluidized Bed Adsorber system):

Amortize Capital Cost assuming 10 years at 8% interest, or

Amortize_{cap} = PMT(0.08,10,Total_{cap})

For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor:

Amortize Capital Cost assuming 5 years at 8% interest, or

Amortize_{cap} = PMT(0.08,5,Total_{cap})

2. Contaminant Removed (lbs)

For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor:

 $Removed_{OX} = Cont_{non-adsorption}/year$

For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Fluidized Bed Adsorption with PDU (system):

 $Removed_{OT} = Cont_{adsorption}/year$

3. \$/lb of Contaminant Removed

For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor:

$$hlteright $ (Amortize_{cap} + Annual_{op}) / Removed_{OX}$$

For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Fluidized Bed Adsorption with PDU (system):

$$h = (Amortize_{cap} + Annual_{op}) / Removed_{OT}$$